

SensorBench: Benchmarking Approaches to Processing Wireless Sensor Network Data

Ixent Galpin¹, Alan B. Stokes², George Valkanas³, Alasdair J. G. Gray⁴, Norman W. Paton², Alvaro A. A. Fernandes², Kai-Uwe Sattler⁵, Dimitrios Gunopulos³

> SSDBM 2014 Ålborg, Denmark

> > ・ロト ・個ト ・ヨト ・ヨト

¹Universidad Jorge Tadeo Lozano, Colombia ²University of Manchester, UK ³University of Athens, Greece ⁴Heriot-Watt University, UK ⁵Ilmenau Institute of Technology, Germany

Wireless Sensor Networks (WSNs)

Over last decade, used to monitor broad range of phenomena

- Bird habitat monitoring
- Volcanic activity
- Glacier movement
- Sniper localization
- …
- Tool to obtain data cost-effectively at higher spatial and temporal resolutions
- Scarce resources
 - Limited energy, memory and computational power
 - Trade-offs due to conflicting QoS requirements
- Intelligent
 - Nodes able to carry out data processing
 - In-network processing may yield tangible benefits

Data Processing in WSNs

Three broad categories, with different degrees of in-network processing and repurposability:

- Warehousing approach
 - Ship all raw sensor readings out of the WSN
 - Example: MultihopOscilloscope [6]
- **Bespoke, hand-crafted** approach
 - WSN carries out a fixed task
 - Examples: D3 outlier detection [10], LR linear regression
- Sensor network query processing (SNQP) approach
 - WSN evaluates ad hoc user-specified queries
 - Examples: TinyDB [8], AnduIN [4] and SNEE [2]

SensorBench: Why do we need it?

- \blacktriangleright Many different proposals for data processing techniques \rightarrow complex design space
- Individual publications evaluate different
 - Tasks
 - Network topologies
 - Performance metrics
 - ...for a particular platform
- How to compare results?

SensorBench: What is it?

- Benchmark to enable comparison of data processing techniques that operate over wireless sensor networks (WSNs)
- Consists of workloads designed to:
 - Explore the variables (and associated trade-offs) within the complex design space of WSN deployments
 - Provide diverse performance metrics pertinent to a broad range of WSN application scenarios
- Scripts and instructions available at http://code.google.com/p/sensorbench

Paper Contributions

- Identification of variables, tasks and performance metrics that represent functional and non-functional requirements of WSN applications
- Specification of workloads that capture trade-offs inherent in WSN deployments
- Application of benchmark to analyse several different data processing techniques

Desiderata

Aimed at environmental monitoring applications

- Nodes at fixed locations, data sensed at regular intervals, energy is scarce, single gateway node
- Platform-agnostic
- Use of simulation
 - Allows systematic experimentation that covers broader region of WSN design space in efficient manner
- Agnostic about adaptivity
- Important benchmark properties include relevance, portability, scalability and simplicity

Variables

Acquisition interval	Amount of time between sensor readings	Almost continuous
		Moderate (5-60 min)
		Very infrequent (4 hours)
Network size	Number of nodes in the WSN de- ployment	Small (2-10)
		Medium (11-30)
		Large (30+)
Node layout	Spatial distribution of nodes throughout WSN	Linear
		Grid
		Arbitrary
Node density	Measure of how close nodes are to one another	Sparse topology
		Dense topology
Proportion of sources	Percentage of WSN nodes that have sensors	Likely to be high to minimize costs
Radio packet loss rate	Percentage of radio packets not re- ceived successfully	Average 30% reported in GDI deployment

Performance Metrics

Lifetime (days)	Amount of time taken for WSN to be unable to carry out data processing task due to energy de- pletion
Total energy consump-	Sum of energy consumed by all nodes in the WSN
tion (Joules)	
Delivery fraction (%)	Percentage of tuples delivered to the gateway of the total that could be delivered
Delivery delay (s)	Time elapsed between event occurring in environ- ment and event being reported
Output rate (bytes/s)	Amount of data produced by the system per unit time.

Example Application Scenario

- Based on Great Duck Island deployment, a classical WSN application [11]
- Aim to monitor nesting patterns of Leach's Storm Petrel and micro-climatic conditions

Source: wired.com

The following schema is assumed: surface(node_id, time, light, temp, humidity) burrow(node_id, time, light, temp, humidity)

Tasks

Select	Report raw data readings from the nodes in the WSN
Aggr	Report the average temperature readings for the
	current time
Join	Correlate data from different regions of the WSN
Join2	Correlate data from different regions of the WSN
	collected at different times
LR	Linear regression
OD	Outlier detection

Example of Join2 task expressed using a SNEEql query:

RSTREAM SELECT b.node_id, b.temp FROM burrow[NOW] b, surface[NOW-1 MINUTE] s, WHERE b.temp > s.temp;

SensorBench Workloads

Varying

- 1. network size
- 2. network layout
- 3. node density
- 4. acquisition interval
- 5. proportion of sources
- 6. radio loss rate
- 7. task

Running the Benchmark

- Sensor datafiles and topologies can be downloaded from http://dx.doi.org/10.6084/m9.figshare.934307
- Scripts to run jobs on Avrora emulator [13]
 - ▶ Optionally using HTCondor parallel computing platform [12]
- Scripts to parse total energy consumption, lifetime, output rate, delivery fraction and delivery delay from Avrora log files
- ► We ran it against MultihopOscilloscope, LR, OD, SNEE
- 10 topologies generated for each combination of (Network Size, Node Layout, Node Density, Proportion of Sources)

Varying Network Size

Variable	Values
Tasks	{Select, Aggr, LR, OD}
Acquisition interval	32
Network size	{9, 25, 100}
Node layout	arbitrary
Node density	3
Proportion of sources	80
Radio loss rate	0

3 topology sizes \times 4 tasks \times 10 topologies per topology size = **120 simulations**!

SensorBench, SSDBM '14

Network Size vs. Delivery Fraction

Network size vs. Delivery Delay

Varying Network Layout

Variable	Values		
Tasks	{Select, Aggr, LR, OD}		
Acquisition interval	32		
Network size	25		
Node layout	{linear, grid, arbitrary}		
Node density	3		
Proportion of sources	80		
Radio loss rate	0		

Node Layout vs. Lifetime

Varying Acquisition Interval

Variable	Values
Tasks	{Select, Aggr, LR, OD}
Acquisition interval	$\{1, 2, 4, 8, 16, 32, 64,$
	128}
Network size	25
Node layout	arbitrary
Node density	3
Proportion of sources	80
Radio loss rate	0

Acquisition Interval vs. Delivery Delay

Related Benchmarks

Stream Data management

- Linear Road benchmark [1]
- Wireless Sensor Networks
 - Devices (TinyBench [3])
 - Processors (SenseBench [9])
 - Cryptographic algorithms [5]
 - Communications (LinkBench [14])
- Bisque [7] is a proposals for a WSN query processing benchmark
 - We cover more varied variables, tasks and metrics

Evaluations of Sensor Data Management Systems: Variables

Proposal	Acquisition interval	Node layout	Node density	Network size	Proportion of	Packet loss	Other
					Sources	rate	
SensorBench	•	•	•	•	•	•	
TinyDB	•						Selectivity, Time
AnduIN							Time, Window
							size
MicroPulse			•				Time
SNEE	•	•					Delivery Time
Aspen		•					Selectivity, Win-
							dow size, Time
Bisque				•			Selectivity

Evaluations of Sensor Data Management Systems: Metrics

Proposal	Network energy	Lifetime	Delivery fraction	Delivery delay	Output rate	Other
SensorBench	•	•	•	•	•	
TinyDB		•	•		•	Maintenance overhead
AndulN		•				Computation time
MicroPulse		•				
SNEE	•	•				Memory Usage
Aspen					Network traffic, Node load	
Bisque			•	•		Node Energy Consumption

Evaluations of Sensor Data Management Systems: Tasks

Proposal	Select	Aggr	Join	Regression	Outlier
					Detec-
					tion
SensorBench	•	•	•	•	•
TinyDB	•	•			
AndulN	•	•	•		•
MicroPulse	•				
SNEE	•	•	•		
Aspen			•		
Bisque	•	•			

Evaluations of Sensor Data Management Systems: Tasks

- SensorBench provides means to perform descriptive and comparative analysis of broad range of WSN data processing proposals
 - relevance, portability, scalability and simplicity
- Subsumes most relevant empirical analysis in terms of scope while remaining simple to run
- Scripts provided to facilitate implementation of the benchmark using popular simulator

References

- [1] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey, E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear road: A stream data management benchmark. In VLDB, pages 480–491, 2004.
- [2] I. Galpin, C. Y. A. Brenninkmeijer, A. J. G. Gray, F. Jabeen, A. A. A. Fernandes, and N. W. Paton. SNEE: a query processor for wireless sensor networks. *Distrib. Parallel Dat.*, 29(1-2):31–85, Nov. 2011.
- [3] M. Hempstead, M. Welsh, and D. Brooks. TinyBench: The case for a standardized benchmark suite for TinyOS based wireless sensor network devices. In LCN, pages 585–586, 2004.
- [4] D. Klan, M. Karnstedt, K. Hose, L. Ribe-Baumann, and K.-U. Sattler. Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AndulN. *Distrib. Parallel Data.*, 29(1-2), 2011.
- [5] Y. W. Law, J. Doumen, and P. Hartel. Survey and benchmark of block ciphers for wireless sensor networks. TOSN, 2(1):65–93, 2006.
- [6] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, et al. TinyOS: An operating system for sensor networks. In *Ambient intelligence*, pages 115–148. Springer, 2005.
- [7] Q. Luo, H. Wu, W. Xue, and B. He. Benchmarking in-network sensor query processing. Technical Report HKUST-CS05-09, Department of Computer Science, HKUST, 2005.
- [8] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst., 30(1):122–173, 2005.

References

- [9] L. Nazhandali, M. Minuth, and T. Austin. SenseBench: toward an accurate evaluation of sensor network processors. In Proc. Int. Workload Characterization Symp., pages 197–203. IEEE, 2005.
- [10] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos. Online outlier detection in sensor data using non-parametric models. In VLDB, pages 187–198, 2006.
- [11] R. Szewczyk, A. M. Mainwaring, J. Polastre, J. Anderson, and D. E. Culler. An analysis of a large scale habitat monitoring application. In SenSys, pages 214–226, 2004.
- [12] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the Condor experience. Concurrency - Practice and Experience, 17(2-4):323–356, 2005.
- [13] B. Titzer, D. K. Lee, and J. Palsberg. Avrora: scalable sensor network simulation with precise timing. In IPSN, pages 477–482, 2005.
- [14] K. Veress and M. Maroti. Linkbench: Benchmark and metric framework for wireless sensor networks. In IPSN, pages 171–172, 2011.